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Abstract The 2018 outbreak of dengue in the French overseas department of Réunion was
unprecedented in size and spread across the island. This research focuses on the cause of the outbreak,
asserting that climate played a large role in the proliferation of the Aedes albopictus mosquitoes, which
transmitted the disease, and led to the dengue outbreak in early 2018. A stage‐structured model was run
using observed temperature and rainfall data to simulate the life cycle and abundance of the Ae. albopictus
mosquito. Further, the model was forced with bias‐corrected subseasonal forecasts to determine if the
event could have been forecast up to 4 weeks in advance. With unseasonably warm temperatures remaining
above 25°C, along with large tropical‐cyclone‐related rainfall events accumulating 10–15 mm per event,
the modeled Ae. albopictusmosquito abundance did not decrease during the second half of 2017, contrary to
the normal behavior, likely contributing to the large dengue outbreak in early 2018. Although subseasonal
forecasts of rainfall for the December–January period in Réunion are skillful up to 4 weeks in advance,
the outbreak could only have been forecast 2 weeks in advance, which along with seasonal forecast
information could have provided enough time to enhance preparedness measures. Our research
demonstrates the potential of using state‐of‐the‐art subseasonal climate forecasts to produce actionable
subseasonal dengue predictions. To the best of the authors' knowledge, this is the first time subseasonal
forecasts have been used this way.

Plain Language Summary Between December 2017 and February 2018, there was a large
outbreak of dengue in the French overseas department of Réunion. Tropical‐cyclone‐related rainfall events
and higher‐than‐average temperatures played a role in the dengue outbreak, which could have been
forecast 4 weeks in advance. The size of the Aedes albopictusmosquito population in Réunion was modeled
with temperature and rainfall data to replicate the population size that would have been present during
the time of the outbreak. Rainfall and temperature forecasts were input into the mosquito model, for 1 to
4 weeks prior to the target date of 8 January, to better understand if the increased mosquito population could
have been calculated in advance. Due to abnormally warm temperatures hovering around 25°C for most of
the year, along with large rainfall events during the 2017–2018 transition, the mosquito population did
not diminish toward the end of 2017, contrary to normal behavior, likely contributing to the large dengue
outbreak in early 2018. Additionally, model results suggest accurate prediction of the onset and size of the
outbreak 2 weeks in advance, which could have provided enough time to enhance preparedness measures.

1. Introduction

Despite heightened levels of attention and the mobilization of intensive vector‐control efforts over the last
several decades, Réunion, an island in the Indian Ocean, experienced an unprecedented epidemic of dengue
during the early months of 2018. A total of 1,388 cases were reported between 1 January and 15 April 2018,
and 6,942 cases by the end of the year, a 6,000% increase from 2017 (Kles et al., 1994; World Health
Organization [WHO], 2019; Kreisel, 2018). The first dengue epidemic occurred in Réunion between 1977
and 1978 (Kreisel, 2018). Between 2004 and 2016, small dengue outbreaks have been observed on the island,
with an average number of cases ranging from 1 to 281. In 2017, a larger outbreak was observed, with 1,086
cases reported; however, even compared to this outbreak, the magnitude of the 2018 event was unusual in
size (Kreisel, 2018; Larrieu et al., 2012).
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Globally, dengue is a significant public health concern, estimated to cause nearly 100 million symptomatic
cases per year, but tends to be confined to urban areas in tropical and subtropical regions, where the princi-
pal mosquito vector,Aedes aegypti, is endemic (Bhatt et al., 2013). Dengue can also be transmitted by the sec-
ondary mosquito vector Aedes albopictus. Unlike Ae. aegypti, the range distribution of Ae. albopictus also
includes temperate regions of the globe, such as North America, Europe, and China (Kraemer et al., 2015).
On Réunion, Ae. albopictus may be the more important vector as it has been found in higher relative abun-
dances than has been Ae. aegypti, and Ae. aegypti larvae have been found only at the west coast of the island
(WHO, 2019). The vector Ae. albopictus has rarely been associated with large dengue outbreaks, such as the
one observed in 2018 (Lambrechts et al., 2010). Surveillance on Aedes vector density is important and oper-
ationalized for prioritizing areas and timing of vector control. One of the most widespread indices is the
Breteau index (BI), which measures the number of Aedes larvae or pupae positive containers per 100 houses
inspected (WHO, 2020).

The underlying causes for the sudden and unusual upsurge in cases of the 2018 outbreak have not been
investigated in detail thus far. High susceptibility to dengue virus among the population, or genetic adapta-
tion of the dengue virus to Ae. albopictus are plausible hypotheses (Kles et al., 1994). Additional suppositions
include local water use, specifically water insecurity, water hoarding, and unidentified standing water, along
with other socioeconomic conditions that may have stimulated the growth of local vector populations and
hampered the preventative efforts taken by the local government (Akanda et al., 2020; Caprara et al., 2009;
Delatte et al., 2013; Fred et al., 2018; Setbon & Raude, 2008).

We hypothesize that optimal temperatures for the vector and the virus during most of 2017, along with
tropical‐cyclone‐related rainfall occurring between the end of 2017 and the beginning of 2018, created sui-
table environmental conditions and hampered vector‐control activities, contributing to unusual vector
abundance on the island. Previous research suggests that the combination of above‐normal rainfall and tem-
peratures is a prerequisite for the reproduction of ectotherm vectors such as Ae. albopictus, leading to high
vector abundance (Dieng et al., 2012; Hawley, 1988; Jia et al., 2016; Liyanage et al., 2016; Lowe et al., 2018;
Reinhold et al., 2018; Waldock et al., 2013). Favorable ambient climatic conditions enhance viral replication
within vectors and lead to increased transmission in a vulnerable population (Liu‐Helmersson et al., 2016).
Additionally, we hypothesize that these rainfall events could have been forecast up to 4 weeks in advance,
which, along with information about the high vector population and the dengue circulation at the moment,
could have provided decision makers with the information needed to prevent or minimize the outbreak.
Such tools could be regularly used by decision makers as a form of early‐warning systems to protect against
future outbreaks.

2. Data and Methods
2.1. Climate Attribution

In order to examine the contribution of climatic conditions to the 2018 dengue outbreak in Réunion, we ana-
lyzed the preceding climatic conditions and contextualized them using an 18‐year baseline: 2000–2017. Our
climate analysis used observed station‐based gridded rainfall data (CPC‐Unified; see Chen et al., 2008), and
temperature and atmospheric circulation variables from the European Re‐Analysis Interim project (Dee
et al., 2011). We developed a process‐based stage‐structured model of the mosquito vector Ae. albopictus
by drawing on previously calibrated models of Ae. albopictus (Jia et al., 2016; Metelmann et al., 2019), and
of Ae. aegypti (Liu‐Helmersson et al., 2019). Additionally, we used the BI for validating the predicted larvae
and pupae from our model. This is not a straightforward comparison, but in the absence of the actual larvae
and pupae frequencies, which have not been surveyed, we believe the temporal association between BI and
the predicted larvae and pupae will give, for the circumstances, an indication of the model validity. The
model was validated to local BI observations from Réunion (Boyer et al., 2014), exhibiting skillful results
(Figure 1). See the supporting information for further details.

The model was then run for the baseline period on a “perfect prognosis” mode (Wilks, 1995), i.e., using cli-
mate observations of daily temperature and rainfall to generate past adult vector population from four com-
partments (i.e., emerging, blood feeding, gestating, and ovipositing); the approach is designed to help
diagnose the role of climate in the present epidemic event and also as a measure of the maximum predictive
skill provided by such a model. The adult Ae. albopictus abundance was standardized over time in order to
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visualize statistical anomalies in vector population driven by climate factors. We obtained epidemiological
data of dengue from Réunion from 2010 up to April 2018, provided by the European Centre for Disease
Control (ECDC; Muñoz, 2020).

2.2. Subseasonal Skill Assessment

Additionally, we wanted to understand if the events leading to the outbreak could have been forecast in
advance. Seasonal forecasts provide a first layer of information to assess if suitable conditions for an outbreak
will happen in a coming season but cannot be specific enough as to indicate when within that season the epi-
demic could occur. Nonetheless, the relatively new subseasonal forecasts have the potential to provide that
kind of information (Vitart et al., 2017). Using subseasonal climate forecasts produced by the European
Centre for Medium‐Range Weather Forecasts (ECMWF) model, available through the Seasonal to
Subseasonal Prediction Project Database (Vitart et al., 2017; World Meteorological Organization, 2020), we
analyzed if and how many weeks in advance the increase in mosquito population could have been forecast.

We conducted a subseasonal forecast skill assessment analysis for both temperature and rainfall, as
described below, paying special attention to subseasonal rainfall forecast skill to see if the heavy rainfall
episodes that occurred at the end of December 2017 and beginning of 2018 (yellow sections in Figures 2a

Figure 1. The stage‐structured vector model performs well in comparison to Réunion Breteau index between 2007 and
2012 (Boyer et al., 2014). (a) Time series of precipitation data. (b) Time series of temperature data. (c) Time series
of normalized Breteau index and normalized modeled larva abundance, where annotations indicate correlation between
the two and that a sliding mean of 4 weeks was applied to the larvae abundance. (d) A linear regression model of the
modeled larvae abundance against the Breteau index shows an adjusted R‐squared of 0.32.
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and 2b) could have been forecast. Predictive skill, by definition (e.g., Murphey, 1988), involves the
comparison of “how accurate” a forecast system is with respect to observations. To assess “how accurate” a
forecast is, one needs to consider the best set of scores that measure the particular forecast attribute that
wants to be analyzed (e.g., see Table 1 inMason, 2018). Themetrics chosen for this study are described below.

Four different lead time forecasts were used, each 45 days in length, for 1 to 4 weeks before the target week
starting on 8 January 2018. For simplicity, we refer to each subseasonal forecast as Week 1, Week 2, Week 3,
and Week 4 prior to the target week, corresponding to the initializations of 1 January 2018, 25 December
2017, 18 December 2017, and 11 December 2017, respectively. The week of 8 January was selected due to
its proximity within the various tropical‐cyclone‐related rainfall events hypothesized to be partially respon-
sible for the observed steep increase in dengue cases during and after that week.

For each of the four sets of 45‐day‐long forecasts, a large set of 160 ECMWF hindcasts was downloaded from
the Subseasonal‐to‐Seasonal Database at the International Research Institute for Climate and Society's Data
Library (IRIDL). Hindcasts are forecasts made with exactly the same model configuration for the same 45
forecast days in the past 20 years. For example, for the 1 January 2018 initialization, the forecasts consist
of daily predictions from 1January to 14 February 2018, and the hindcasts (or “reforecasts”) consist of the
same days for the years 1998–2017. A 20‐year record does not provide a statistically robust sample for skill
analysis; hence, we used all initializations available in the 4 weeks prior to the initialization of the forecast.
Since the ECMWF model provides two initializations per week (every Monday and Thursday), we used a
total of 160 hindcasts (20 hindcasts × 2 initializations/week × 4 weeks), as indicated above.

The skill assessment process involved a cross‐validation procedure for two key forecast attributes: associa-
tion, measured by the Spearman rank correlation, and discrimination, measured by the two‐alternative
forced choice metric, or 2AFC (supporting information; Mason &Weigel, 2009). The cross‐validation analy-
sis used a leave‐5‐out moving window and was conducted using PyCPTv1.5 (Muñoz et al., 2019), a set of
Python libraries designed to interface and enhance International Research Institute for Climate and
Society's Climate Predictability Tool (CPTv16; Mason et al., 2020). PyCPT automatically downloads from
the IRIDL the necessary hindcasts and observations to perform the skill assessment analysis.

For each set of subseasonal hindcasts, we corrected for mean and amplitude biases present in the tempera-
ture and rainfall time series. To do this, we shifted the mean and rescaled the standard deviation for each

Figure 2. (main) Simulated weekly standardized abundance of Aedes albopictus adult population in Réunion (blue curve, units in standard deviations, σ), overlaid
with weekly number of reported dengue cases by ECDC (purple curve). (a) As in the main panel, but for the period highlighted in gray: 1 April 2017 to 26
March 2018. Vertical scale for dengue cases ranges from 0 to 40 to better visualize variations before December 2017. (b) Weekly rainfall amounts (green curve)
and temperature values (red curve) for the period highlighted in gray; horizontal red lines indicate suitable temperatures for the vector: 20–30°C. Periods
highlighted in yellow in panels (a) and (b) indicate the timing and duration of each one of the seven tropical storms/cyclones referred to in the main text. The base
period for standardization is 2010–2016. Shading represents the uncertainty envelope of each curve: For standardized vector abundance, it corresponds to ±1s,
while for dengue cases, rainfall, and temperature, it is defined by the observed difference in weekly maxima and minima.
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variable and forecast initialization and then used this corrected daily temperature and rainfall time series to
run the vector model in forecast mode. No climate forecast calibration was conducted beyond the mean and
variability bias corrections.

3. Results
3.1. Climate Attribution

During 2017, then the warmest year on record without an El Niño event (NOAA, 2018), daily average surface
temperature in Réunion provided suitable conditions for vector proliferation, even duringmost of the austral
winter (in red in Figure 2). The average daily rainfall between May and the end of November on the island
was around 2–3 mm/day, providing suitable conditions for mosquito reproduction. Starting on 27
December, a total of seven (European Commission, 2018) large‐scale atmospheric systems in the
South‐West Indian Ocean (one tropical depression, one tropical storm, and five tropical cyclones, denoted
by yellow sections in Figure 2) produced important rainfall events over Réunion (in green in Figure 2).
Rainfall associated with these tropical systems is likely responsible for the increase in vector population dur-
ing the end of 2017 and beginning of 2018, due to a compounding effect involving an increased number of
larvae habitats and mosquitos and also the hampering of vector‐control activities.

This effect is reflected in the reported number of dengue cases in Réunion in 2017, as they did not drop off to
typical levels observed in previous years (see Figure 2, purple line); after a bimodal peak of dengue reports
with maxima between April and June, the cases decreased but did not subside. The modeled vector popula-
tion, in turn, grew from a relative minimum in June to near‐normal values toward the end of 2017 and pro-
ceeded to growmore than 2 standard deviations, σ, during the beginning of 2018 (see blue curve in Figure 2),
the sharp increase being concurrent with the initiation of the outbreak.

Therefore, we posit that sustained high levels of mosquito population co‐occurring with an actively circulat-
ing DEN2 serotype virus set up the scenario for the 2018 epidemic, which was triggered by a combination of
suitable environmental temperatures and impacts of tropical‐cyclone‐related rainfall. The compounding
impact of these events for both the mosquitoes and the virus during most of 2017 and the beginning of
2018 created additional larvae habitats and amore difficult landscape for conducting vector‐control activities.

3.2. Subseasonal Skill Assessment

Skill assessment for the beginning of the outbreak shows (Figures 3 and S1) the uncalibrated rainfall predic-
tions to be skillful even 4 weeks ahead of time. Forecast skill for surface temperature (not shown) was also

Figure 3. Forecast skill, measured by the Spearman rank correlation, for lead times (a) 1, (b) 2, (c) 3, and d) 4 weeks
preceding the target week starting on 8 January 2018. A green square shows the location of Réunion.
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high up to 6 weeks ahead of time; temperature tends to vary little during the analyzed season (Figure 2b),
which makes it considerably easier to predict than rainfall. Specifically, by using forecasts for 1 to 4 weeks
(Figure 4) preceding 8 January 2018, the targeted week of one of the larger rainfall events, we found that
models were able to forecast above‐normal rainfall over Réunion 3 weeks in advance, corresponding to
the initialization of 18 December 2018. The forecasts predicted an anomalous amount of 10–15 mm of
above‐average rainfall for Réunion and the surrounding region, consistent with the pass of tropical
cyclones Ava and Berguitta (Bouhet, 2018; European Commission, 2018). We found that the forecast
model has improved skill over the baseline (based on the long‐term rainfall average for the period under
consideration, commonly known as “climatology”) for all weeks analyzed. Further research should
consider if and how spatially calibrated model output (e.g., Muñoz et al., 2017), addressing mean,
variability, and spatial biases, may be able to further improve the forecast skill with additional lead times
at the subseasonal time scale.

Upon integrating this forecast information into the mosquito model (Figure 5), there is potential for the use
of subseasonal forecasts in predicting mosquito vector abundance, especially for adult mosquitos, up to

Figure 4. (a) Observed and forecast rainfall anomaly (mm/day) produced (b) 1, (c) 2, (d) 3, and (e) 4 weeks preceding the
target week of 8 January 2018.
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4 weeks in advance, and perhaps also for larvae in the case of the Week 1 forecast (Figure 5). Indeed, always
focusing on the week starting on 8 January 2018, theWeek 1 forecast shows (Figure 5a) that as larvae reach a
peak, adult abundances grow a few days after that, as expected, and although the timing is not perfect in the
larvae forecast, the adult abundance matches almost perfectly the simulated one. The match between the
simulated and forecast adult population abundance is weaker for the Week 2 and Week 4 forecasts
(Figures 5b and 5d), although still of potential use for decision makers. Nonetheless, there is room for
improvement in the Week 3 forecast (Figure 5c).

Though the subseasonal rainfall forecasts indicate that up to 3 weeks out, there is a positive rainfall amount
tendency, there is not a clear translation of this behavior into an increase in adult mosquito abundance.
However, the subseasonal forecasts in this study are spatially uncalibrated. Spatially calibrated climate fore-
casts have the potential for increased skill in mosquito abundance at a lead time of 3 to 4 weeks in future
analysis. This suggests that it is and was possible—at least for this particular case—to create and utilize
an early‐warning system in an effort to protect the citizens of Réunion.

4. Discussion and Concluding Remarks

Based on this analysis, we posit that climate factors substantially contributed to the onset and magnitude of
the 2018 outbreak of dengue in Réunion. Together, climate factors created a compounding effect related to
(1) suitable temperatures during most of 2017 that increased vector activity and viral replication rates above
usual levels and (2) tropical cyclone rainfall at the end of 2017 and beginning of 2018 that supported the for-
mation of additional larvae habitats and mosquito proliferation, which hampered vector‐control efforts on
the island due to the tropical cyclone emergencies.

Compared to previous years in the analysis, 2017 is the only year that concurrently exhibits (a) the largest
number of weeks per year with mosquito abundance around or above 1 before winter, (b) close to the
long‐term‐normal mosquito population values during and after winter, and (c) the largest number of

Figure 5. Forecast (dashed, with standard deviation shading) and reference (simulation used observed climate data;
solid) adult (red) and larvae (blue) mosquito abundance, produced (a) 1, (b) 2, (c) 3, and (d) 4 weeks preceding the
target week of 8 January 2018. Each forecast was produced forcing the vector model with output from the ECMWFmodel
(51‐member ensemble mean) and has a horizon of 45 days. The analysis focuses on the week starting on 8 January
2018 (gray shading).
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weeks per year with nonzero dengue cases reported (Figure 2). These conditions imply that a balance
between a high vector survival rate (even through the relatively warm winter) and the number of infected
humans with dengue might have been a key ingredient setting the stage of the 2018 epidemic. Health‐
related authorities in Réunion should pay attention to these combinations of conditions, along with increas-
ing surveillance of Aedes vectors for management, in order to be better prepared for potential outbreaks,
which are expected to become more common due to global warming.

Most importantly, we contend that this particular epidemic event could have been successfully predicted by
utilizing models such as the one used in this study, forced by seasonal and subseasonal climate forecasts
(Kirtman et al., 2014; L'Heureux et al., 2015; Vitart et al., 2017). In this particular example, the
International Institute for Climate and Society's (2019) seasonal forecast system predicted above‐normal
rainfall conditions over Réunion for the November 2017 to January 2018 season since at least October
2017. Given this forecast, and the warmer‐than‐normal temperatures observed during the year, it would
have been possible to establish an early‐warning status of a potential dengue outbreak, targeting the end
of 2017. Skillful predictions in this context could have provided public health authorities with sufficient
time to initiate an early‐response strategy to try to minimize the impact of this epidemic event. However,
to produce a fully functioning early‐warning system, skillful forecasts for all seasons of the year would need
to be produced.

Utilizing subseasonal dengue outbreak predictions allows for the assessment of expected costs and benefits
of implementing early‐warning systems and other response activities. One of the largest challenges for using
these predictions derives from uncertainty in the forecasts. Due to the inherent uncertainties in prediction
and local circumstances that shape high‐transmission dengue events, false alarms may occur. Benefits from
this analysis include the potential to allow decision makers to avoid otherwise unexpected health system
costs or experience other burdens due to the disease in the event of an outbreak. Identifying the net benefit,
by taking the difference of the benefits and costs, allows for the comparison of response strategies and makes
explicit the trade‐offs between forecast skill, response effectiveness, and monetary costs. The information
generated by such assessments can be used to inform preparedness and response planning under
uncertainty.

Limitations of this research include the need to use additional dengue and climate models to better assess
uncertainties in the study and to conduct a formal model evaluation for a long period of time, which also
involves access to quality‐controlled local climate, entomological, and epidemiological data. We recognize
that several other factors may have impacted the spread of dengue during this outbreak that have not been
included in this study, including human mobility, spatial dependence of the vector, and the circulation of
new serotypes. In particular, due to increased tropical storms on the island, humanmobility likely decreased
during this time, leading to residents sheltering in their homes and being potentially more exposed to trans-
mission in more rural regions.

Additionally, while the effects of environmental factors, such as rainfall and temperature, on dengue have
been well established, the relationship between vector proliferation and dengue incidence is not well under-
stood (Bowman et al., 2014) and the limited number of studies to date have produced somewhat contradic-
tory results (de Albuquerque et al., 2018; de Melo et al., 2012; Degener et al., 2014; Liyanage et al., 2019;
Pessanha et al., 2014). One potential reason suggested is that most dengue risk factors are likely to exhibit
spatial dependence, and this spatial dependence should be considered in further research (Scott &
Morisson, 2003; Vargas et al., 2015). Given that the main premise of an early‐warning system is to initiate
timely and appropriate response and inform vector‐control interventions, it is important to identify the tem-
poral and spatial relationship between vector proliferation and dengue risk.

Finally, dengue has been circulating on Réunion for some time; nevertheless, the introduction of a new ser-
otype, and also a new lineage, can spur epidemics. In the case of the 2018 outbreak, DENV‐2 appeared to be
the dominant serotype, but DENV‐1 and DENV‐4 have also been detected (European Commission, 2018).
Given the past circulation and cocirculation of serotypes, we pose climate may have played an important
role in the 2018 anomaly, as indicated in this analysis. That does not exclude the other factors involved,
of course.

For future modeling research, we recommend that subseasonal hindcasts be spatially calibrated using
pattern‐based calibration to minimize biases in the mean, variability, and spatial patterns; similar efforts
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have been recently conducted regarding environmental suitability for Aedes‐borne disease transmission at
seasonal time scales (Muñoz et al., 2017; Muñoz et al., sub‐judice). Additionally, we suggest that future stu-
dies investigate whether this particular dengue outbreak co‐occurred with the adaptation of the virus to the
vector, a possibility that cannot be ruled out by this analysis. Adaptability, along with human mobility, can
pose a great threat to other countries that are otherwise unexposed to specific Aedes‐borne diseases, such as
dengue. As a consequence, from this and future outbreaks, areas across the world with high connectivity to
Réunion, or other high‐risk areas, are likely to receive viremic travelers. If the timing is right to the local
receptivity of the vector, this transmission could initiate epidemics outside the island and pose a great threat
to other vulnerable populations.
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